If it's not what You are looking for type in the equation solver your own equation and let us solve it.
19.375x^2-2160x+40500=0
a = 19.375; b = -2160; c = +40500;
Δ = b2-4ac
Δ = -21602-4·19.375·40500
Δ = 1526850
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1526850}=\sqrt{2025*754}=\sqrt{2025}*\sqrt{754}=45\sqrt{754}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2160)-45\sqrt{754}}{2*19.375}=\frac{2160-45\sqrt{754}}{38.75} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2160)+45\sqrt{754}}{2*19.375}=\frac{2160+45\sqrt{754}}{38.75} $
| -0.44x+0.33=-0.66 | | 7x-10=3(2x-1) | | 4 | | -31=x-1-11x | | 6p+18=-3(8+5p) | | -3x-7=-5-2x | | 2x+3x+6x=35 | | 3+5(1+6x)=128 | | −4(7.5y+6)=23.5 | | -6.4(x-3.25=19.2 | | 16x^2-2021.625x+40365=0 | | 3.1x-9.2=2.06-1.15x | | 2p=-6+3p | | 13/5y-14=-1 | | -5m+2m=-6 | | 2+30=-4(6x-8) | | 5(x+)=4(x-3) | | (7x+4/x-2)=-4/3 | | z+5/3=5z+1/7 | | 16d+d—14d-19d=12 | | 4x-3x+5=-2 | | -17d=1 | | -11+43=-4(x+6) | | -3b-4b=7 | | 35=18a | | -10d-3d-4d+8=9 | | 3-8y=15 | | -2(x+9)=4=-14 | | 3z+7+5z=4(2z+7) | | 119=-7v+5(7+7v) | | 2n+3n=-10 | | 3x+5=61/3 |